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Abstract

For an in_nite solid containing a void\ the cavitation instability limit is de_ned as the remote stressÐand
strain state\ at which the void grows without bound\ driven by the elastic energy stored in the surrounding
material[ Such cavitation limits have been analysed by a number of authors for metal plasticity as well as
for nonlinear elastic solids[ The analyses for elasticÐplastic solids are here extended to consider the e}ect of
a large initial yield strain\ and it is shown how the critical stress value decays for increasing value of the yield
strain[ Analyses are carried out for remote hydrostatic tension as well as for more general axisymmetric
remote stress _eld\ with an initially spherical void[ Di}erent levels of strain hardening are considered[
Þ 0887 Elsevier Science Ltd[ All rights reserved[

0[ Introduction

Unstable growth of a small void in an elasticÐplastic solid can occur when the stress level in the
surrounding material is su.ciently high\ so that the elastic energy released by the void expansion
is su.cient to drive the expansion[ For a cavity in an in_nite elasticÐplastic material under pure
hydrostatic tension the critical stress was determined early on "Bishop\ Hill and Mott\ 0834^ Hill\
0849#\ at which the void grows without bound\ while the strain and stress states at in_nity remain
unchanged[ Also in the context of nonlinear elasticity much interest has been devoted to the study
of cavitation instabilities "Ball\ 0871^ Horgan and Abeyaratne\ 0875^ Horgan\ 0881#[

In tensile experiments on highly constrained ductile wires Ashby\ Blunt and Bannister "0878#
found cavitation failures involving only a single void\ which occurred in stress states di}ering from
pure hydrostatic tension[ Therefore\ Huang et al[ "0880# and Tvergaard et al[ "0881# analysed void
growth in axisymmetric stress states\ and determined the cavitation instability limits as functions
of the transverse stress over axial stress ratio[ These studies have been extended to consider the
e}ect of an initially prolate or oblate spheroidal void shape on cavitation instabilities "Tvergaard
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and Hutchinson\ 0882#\ or the e}ect of interaction between di}erent size voids at the cavitation
limit "Tvergaard\ 0885\ 0887#[

The analyses of cavitation instabilities in elasticÐplastic studies mentioned above have focused
on metals\ and therefore the values considered for the initial yield strain in uniaxial tension\
oY � sY:E\ have been in the range relevant to most metals\ i[e[ 9[990Ð9[994[ However\ other
materials like polymers that show an elasticÐplastic type of behaviour are characterised by much
higher values of the initial yield strain\ even as high as 9[94Ð9[0[ For glassy polymers with such
high yield strain Steenbrink and van der Giessen "0886# have studied void growth under the
spherically symmetric conditions resulting from pure hydrostatic loading[ As would be expected
by extrapolating the dependence of oY shown in Huang et al[ "0880#\ unstable cavity growth was
found at much lower values of the critical stress\ relative to the initial yield stress\ than those
corresponding to metals[ Steenbrink et al[ "0886# describe their result as an estimate\ since complete
convergence was not obtained in the range of initial void volume fractions analysed\ and due to
the fact that a viscoÐplastic model was used\ so that the results depend on the remote strain rate
applied[

The lower values of the critical cavitation stress for higher values of the initial yield strain are
directly understandable from a physical point of view[ The elastic stress and strain levels in the
solid are approximately proportional to the yield strain\ and thus the stored elastic energy per unit
volume is proportional to the square of the yield strain[ However\ for a given increment of the
void radius the corresponding plastic strain increments are rather independent of the yield strain\
and therefore the dissipated plastic work per unit volume is nearly proportional to the yield strain[
Accordingly\ balance of plastic dissipation with released elastic energy will tend to occur at reduced
stress levels for increasing initial yield strain[

The purpose of the present paper is to extend the results of Huang et al[ "0880# and Tvergaard
et al[ "0881# for a power hardening elasticÐplastic material to also cover the range of large initial
yield strains[ This requires an elasticÐplastic material model valid for large elastic strains as well
as large plastic strains[ Thus\ the hypoelastic approximation often used in _nite strain J1!~ow
theory "e[g[ see Hutchinson\ 0862# will not give a su.ciently accurate representation of the elastic
part of the deformations\ and therefore a truly elastic _nite strain formulation is used here[
Although the wish to consider large initial yield strains is inspired by the behaviour of the polymers\
the present investigation does not make use of the special network models developed for inelastic
deformation of polymers "Boyce\ Parks and Argon\ 0877^ Arruda and Boyce\ 0880^ Wu and van
der Giessen\ 0882#[ The interest here is focused on classical plasticity theory\ allowing for a large
elastic part of the straining[

1[ Material model for _nite elastic strains

1[0[ Deformation `radient

The position of a material point in the initial con_guration\ which serves as the reference
con_guration\ is denoted by x\ relative to a _xed Cartesian frame[ In the current con_guration
the position of the same point is denoted by x¹ \ and thus the displacement vector u and the
deformation gradient F are de_ned by
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u � x¹−x\ F �
1x¹
1x

"1[0#

In formulating an elasticÐplastic theory the multiplicative decomposition of the deformation
gradient may be used

F � Fe = Fp "1[1#

where Fp represents the deformation due to plasticity\ while Fe represents the elastic deformations
and any rigid body rotation "e[g[ see Needleman\ 0874#[ Now\ substituting "1[1# in the expression
F¾ = F−0 for the rate of deformation leads to

D¦W � F¾ = F−0 � F¾ e = Fe−0¦Fe = F¾ p = Fp−0 = Fe−0 "1[2#

where D is the deformation!rate tensor and W is the spin tensor[ From "1[2# we may identify the
elastic and plastic parts of these two tensors through

De¦We � F¾ e = Fe−0 "1[3#

Dp¦Wp � Fe = F¾ p = Fp−0 = Fe−0 "1[4#

where D � De¦Dp and W � We¦Wp[
As has been discussed by Needleman "0874#\ there is a broad class of phenomenological plasticity

relations for polycrystalline solids that specify a plastic ~ow rule for Dp and take Wp 0 9[ This
includes the plasticity relations in J1 ~ow theory\ which will be used here[ It is also noted by
Needleman "0874# that an elasticÐplastic material model based on the relations "1[2Ð1[4# is fully
valid for _nite elastic deformations provided that a truly elastic formulation is used\ for which a
strain energy function exists[

1[1[ Elastic constitutive relations

The constitutive relation for the elastic part of the deformations to be used here is a nonlinear
elastic formulation employed by Tvergaard\ Needleman and Lo "0870#[ This is similar to a
formulation employed by Hutchinson and Neale "0867# and Hutchinson and Tvergaard "0879\
0870#\ and has in all cases been used as a truly elastic _nite strain version of J1 deformation theory[
However\ the model may be used in general as a representation of nonlinear elasticity[

The material is taken to be isotropic with the following de_ning relations between the principal
logarithmic strains oi and the principal Kirchho} stress ti

oi �
0¦n

E
ti−

n

E
"t0¦t1¦t2#¦

2
1 0

0
Es

−
0
E1 $ti−

0
2

"t0¦t1¦t2#%[ "1[5#

Here\ E is Young|s modulus\ n is Poisson|s ratio and Es is the ratio of stress and strain for the
elastic uniaxial Kirchho} stress vs natural strain curve[ Introducing the e}ective Poisson|s ratio ns

ns �
0
1

¦
Es

E 0n−
0
11 "1[6#

the relation "1[5# can be rewritten as
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oi �
0¦ns

Es

ti−
ns

Es

"t0¦t1¦t2# "1[7#

and the inverted form is

ti �
Es

0¦ns $oi¦
ns

0−1ns

"o0¦o1¦o2#%[ "1[8#

For this material a strain energy function F � F"o0\ o1\ o2# can be constructed such that ti � 1F:1oi[
On the _xed current principal stress axes\ Hill "0858\ 0869\ 0867# has shown that the Jaumann

rate of Kirchho} stress t
9

ij is related to the Eulerian strain!rate o¾ij by

t
9

ij �
1ti

1o0

o¾00¦
1ti

1o1

o¾11¦
1ti

1o2

o¾22 " for i � 0\ 1\ 2^ no sum# "1[09#

t
9

ij �
l1

i ¦l1
j

l1
i −l1

j

"ti−tj#o¾ij "for i � j^ no sum# "1[00#

where li are the principal stretches and oi � ln"li#[
On the principal axes\ the relation between the Jaumann derivative of Kirchho} stress t

9
ij and

the Eulerian strain!rate o¾ij is written as

t
9

ij � Rijklo¾kl "1[01#

where the components for i � j and k � l are obtained directly from di}erentiation in "1[8#[ The
shear moduli are obtained from "1[00#\ using "1[8#\ to give

R0101 � R1001 � R0110 � R1010 �
Es

1"0¦ns#
"o0−o1# coth"o0−o1#\ etc[ "1[02#

The _nite strain elastic relations "1[5Ð1[02# can be used to represent a wide class of nonlinear
elastic stress!strain curves\ by using appropriate choices of the function Es[ However\ in the present
paper Es � E will be chosen\ and thus also ns � n according to "1[6#[

For the _nite strain analyses here\ a Lagrangian convected coordinate formulation of the _eld
equations is adopted\ in which a material point is identi_ed by the coordinates xi in the reference
frame and the displacement components ui on the reference base vectors[ The metric tensors in the
current con_guration and the reference con_guration are denoted by Gij and gij\ respectively\ with
determinants G and g\ and the contravariant components of the Kirchho} stress tensor tij and the
Cauchy stress tensor sij are related by tij � zG:gsij[ Latin indices range from 0 to 2\ and the
summation convention is used for repeated indices[

For use in the Lagrangian formulation the components of the tensor R on the embedded
deformed coordinates are computed[ It is convenient to _rst transform the relations "1[01# to the
_xed\ global\ Cartesian coordinate system\ t

9 � R ] D\ and then transforming these relations to
deformed base vectors

t
9ij � Rijklh¾kl "1[03#
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using the relations Rijkl � R"=e¹i# "=e¹j# "=e¹k# "=e¹l#\ tij � e¹j � t = e¹j and h¾ ij � e¹i = D = e¹j[ Here\ the current
base vectors e¹i are given in terms of the reference base vectors ej by

e¹i �"gij¦uj\i#ej[ "1[04#

It is noted that the Jaumann derivatives in "1[09Ð1[01#\ and thus also "1[03#\ result from
di}erentiation of the elastic relationships "1[8#\ and therefore this stress rate is corotational with
the elastic spin rate[ However\ the plasticity description to be used here is J1 ~ow theory with
isotropic hardening\ for which the plastic spin is taken to be zero\ Wp 0 9\ as mentioned below
"1[3Ð1[4#[ Therefore\ in the present case\ the Jaumann rate in "1[03# is also corotational with the
total spin rate[

1[2[ ElasticÐplastic constitutive relations

In J1 ~ow theory\ based on the Mises yield condition\ the plastic part of the strain rate is of the
form h¾p

ij � l¾sij[ Here\ the Mises stress is se �"2sijs
ij:1#0:1\ with the stress deviator sij � tij−Gijtk

k:2\
and for a hardening material the parameter l¾ is proportional to the Mises stress rate\
s¾ e �"2:1se#sklt

9kl[ Then\ the expression for the plastic part of the strain rate can be written on the
form

h¾p
ij �

0
H

mij mklt
9

kl\ mij �
2
1

sij

se

"1[05#

The value of the hardening parameter H is found by using h¾ ij � h¾e
ij¦h¾p

ij together with the assumption
in the present paper that Es � E "see below "1[02##[ Then\ with Et denoting the slope of the uniaxial
Kirchho} stress vs natural strain curve\ the expression for H is

H �
EEt

E−Et

[ "1[06#

If a fully nonlinear elasticity description was used instead\ with a function Es"se# in "1[5Ð1[02#\
this would a}ect "1[06#[ Then\ Young|s modulus E in "1[06# would have to be replaced by the
slope E�t of the elastic uniaxial Kirchho} stress vs natural strain curve at the current stress level[

In the presence of plastic deformations the elastic relationship "1[03# takes the form

t
9

ij � Rijkl"h¾kl−h¾p
kl#\ which can be rewritten as

t
9

ij �"Rijkl−mMijMkl#h¾kl\ Mij � Rijrs mrs "1[07#

m � 6
9\ for se ³"se#max or s¾ e ³ 9

ðH¦mrsM
rsŁ−0\ for se �"se#max and s¾ e × 9

"1[08#

From "1[07# the incremental constitutive relations on the standard form t¾ij � Lijklh¾kl are obtained
directly[

In the description given above\ the elastic constitutive relations are _rst written on principal
stress axes "1[01#\ then transformed to the current deformed base vectors "1[03#\ and _nally
combined with the plastic strain rate expression "1[05# on current deformed base vectors\ to give
the incremental elasticÐplastic constitutive relations "1[07#[ Alternatively\ the plastic strain rate
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expression can be speci_ed on the principal stress axes and combined with "1[01# to give the
incremental elasticÐplastic constitutive relations on the principal stress axes[ Subsequently these
relations can then be transformed to the current deformed base vectors\ to be used in the numerical
solution[ It is noted that both methods have been used int he present computations\ and it has
been checked that they give identical results[

The uniaxial Kirchho} stress vs natural strain curve is represented by a piecewise power
hardening law of the form

t � 8
Eo\ for t ³ sY

sy0
o

oY1
N

\ for t − sY

"1[19#

where oY � sY:E is the initial yield strain\ sY is the initial yield "Kirchho}# stress\ and N is the
strain!hardening exponent[ It is noted that the use of a constant E in "1[19a# is a direct result of
the assumption in the present paper that Es � E in "1[5Ð1[02#[

2[ Problem for formulation and numerical method

Analyses of the growth of a single void in an in_nite solid can be carried out by coupling an
analytical solution for an outer region to a numerical _nite strain solution for an inner region
"Huang et al[\ 0880^ Tvergaard et al[\ 0881#[ In a study of the e}ect of initial ellipsoidal void shapes
on cavitation instabilities Tvergaard and Hutchinson "0882# have preferred using a _nite element
approximation in the whole region analysed\ thus considering a cylindrical cell model with a central
void[ This cylindrical cell model has been used "Tvergaard\ 0871^ Hutchinson and Tvergaard\
0878# to represent a periodic distribution of voids\ but with a su.ciently small void volume fraction
of about 1[4×09−00 it was found that the studies gave a very good approximation of the behaviour
of a single void in an in_nite solid "Tvergaard and Hutchinson\ 0882#[

In the present analyses the cylindrical unit cell is used[ The initial dimensions of the cell are
speci_ed by the height H9 in the axial direction\ the outer radius B9 and the void radius R9[ A
cylindrical reference coordinate system is used\ in which x0 is the axial coordinate\ x1 is the radial
coordinate\ and x2 is the circumferential angle[ In terms of the displacement components ui on the
reference base vectors and the nominal surface tractions Ti\ the boundary conditions for the unit
cell are\ on incremental form\

u¾0 � 9\ T¾ 1 � T¾ 2 � 9\ at x0 � 9 "2[0#

u¾0 � UþI\ T¾ 1 � T¾ 2 � 9\ at x0 � H9 "2[1#

u¾1 � UþII\ T¾ 0 � T¾ 2 � 9\ at x1 � R9 "2[2#

Tþi � 9\ at"x0#1¦"x1#1 � R1
9[ "2[3#

The two constants UþI and UþII are displacement increments and the ratio UþII:UþI is calculated in
each increment such that there is a _xed prescribed ratio r � T:S\ between the macroscopic true
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stresses "see Tvergaard\ 0871#[ Here\ S is the average true stress in the axial direction\ while T is
the average true stress in the radial directions[

Constitutive relations and equilibrium equations are speci_ed here in the context of convected
coordinate formulation of the _eld equations[ The Lagrangian strain tensor is expressed in terms
of the displacement components as

hij �
0
1
"ui\ j¦uj\i¦uk

\iuk\j# "2[4#

where " #\j denoted covariant di}erentiation in the reference frame[
The equations of equilibrium are expressed in terms of the principle of virtual work\ and a

numerical solution is obtained by a linear incremental solution procedure[ The equations governing
the stress increments Dtij\ the strain increments Dhij\ etc[\ are obtained by expanding the principle
of virtual work about the current state\ using "2[4#[ To lowest order the incremental equation is

gV

"Dtijdhij¦tijDuk
\iduk\j# d V � gA

DTidui d A−$gV

tijdhij d V− gA

Tidui d A% "2[5[#

where V and A are the volume and surface\ respectively\ of the body in the reference con_guration
and Ti are contravariant components of the nominal surface tractions[ The bracketed terms are
included to prevent drifting of the solution away from the true equilibrium path[

The displacement _elds are approximated in terms of axisymmetric 7!noded isoparametric
elements\ as in Tvergaard "0871#[ The volume integral in "2[5# is carried out by using 1×1 point
Gauss integration "i[e[ reduced integration# within each element[ An example of a mesh used for
the analyses is shown in Fig[ 0\ illustrating both the outer mesh in the unit cell and the central part
of the mesh near a spherical void[

A special RayleighÐRitz _nite element method "Tvergaard\ 0865# is used to be able to prescribe
a node displacement at the void surface rather than the end displacement UI without applying a

Fig[ 0[ Mesh used for numerical analyses[ "a# The axisymmetric unit cell[ "b# Inner mesh near the void[
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load on the void surface[ This improves the numerical stability near the occurrence of a cavitation
instability where UþI : 9[

3[ Results

In the _rst case to be analysed the material is taken to be power hardening with N � 9[0\
Poisson|s ratio is n � 9[2\ and various values of the initial yield strain sY:E are considered[ The
initial dimensions of the unit cell analysed are speci_ed by H9:B9 � 0 and R9:B9 � 9[990\ so that
the initial void volume fraction in the cell is 5[6×09−09[ The computations are carried out with a
mesh consisting of 19×05 elements\ as shown in Fig[ 0[ It is noted that comparisons with analyses
using only 09 elements in the radial direction have shown very small mesh sensitivity[ Also\
comparison with results obtained for R9:B9 � 9[90 show little sensitivity to the void size\ so that
the void volume fraction used in the present cell model studies is small enough to represent a single
void in an in_nite solid[

Figure 1 gives results for a material subject to remote hydrostatic tension\ r � T:S � 0[ The
curves show the development of axial stress S vs void volume V\ normalized by sY and the initial
void volume V9\ respectively\ with V:V9 given on a logarithmic scale[ The remote stress level for
the cavitation instability is reached when the slope of these curves becomes zero\ which appears to
occur somewhere around V:V9 � 099 for the curves in Fig[ 1[ After that the maximum macroscopic
stress has been reached\ this stress remains constant during a large amount of subsequent void
growth\ which con_rms that the initial void volume has been chosen small enough to adequately
represent an in_nite solid[ If the initial void volume fraction had been too large\ the stress S would
clearly decay after reaching the maximum\ as is well known from previous cell model studies of
void growth "e[g[ see Tvergaard\ 0871#[ The computations in Fig[ 1 are stopped at values of V:V9

slightly below 0999\ since here the mesh near the void is so distorted that the solution breaks down

Fig[ 1[ Remote axial stress vs void volume for T:S � 0\ N � 9[0 and n � 9[2[
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Fig[ 2[ Critical stress for cavitation instability vs initial yield strain\ for T:S � 0\ N � 9[0 and n � 9[2[

numerically[ If remeshing had been used\ such computations could be continued to much larger
values of V:V9 "Tvergaard\ 0886#[

The three curves in Fig[ 1 show the expected e}ect that the critical cavitation stress\ Sc:sY\ decays
strongly as the initial yield strain\ sY:E\ is increased[ The value sY:E � 9[994 is in the range relevant
to metal plasticity\ and here the critical stress is high\ Sc:sY � 3[60\ as found by Huang et al[
"0880#[ But the critical stress values Sc:sY � 2[21 for sY:E � 9[91 and Sc:sY � 0[84 for sY:E � 9[0
illustrate the strong sensitivity to the initial yield strain[ Based on a number of computations of
the type shown in Fig[ 1 the critical stress values for a large range of sY:E values\ between 9[992
and 9[04\ are given in Fig[ 2[

In relation to the _nite strain description "1[5Ð1[03# used here for the elastic part of the
deformations\ it is of interest to note that for r � 0 the void growth problem in an in_nite solid is
a spherically symmetric problem[ Then\ in any material point\ the principal stress axes remain
_xed relative to the material\ along the radius and two transverse directions\ and this means that
the shear moduli "1[02# are never active in the problem solution[ Then\ since these shear moduli
are the only di}erence from the hypoelastic moduli "see Tvergaard et al[\ 0870#\ the full elasticÐ
plastic solution will not di}er from that based on using the hypoelastic model[ With the present
cylindrical cell model\ there is not complete spherical symmetry\ but spherical symmetry is so well
approximated in most of the cell that the di}erence hardly matters[ It should be emphasized though
that even for spherically symmetric conditions there is not proportional stressing\ as discussed by
Tvergaard et al[ "0881#\ and therefore predictions based on the _nite strain J1!~ow theory are
expected to di}er from predictions based on the corresponding J1!deformation theory[ Thus\ for
a material point at the onset of plastic ~ow the condition tR � tu−sY is satis_ed\ where tR and tu

are the radial and transverse principal stresses\ respectively[ But after that this material point has
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Fig[ 3[ Remote axial stress vs void volume for T:S � 9[8\ N � 9[0 and n � 9[2[

been engulfed in the plastic zone around the expanding void and has e}ectively reached the void
surface\ the radial principal stress is tR � 9\ while tu is well above sY[

For r � 9[8 the curves in Fig[ 3 show the development of axial stress S vs void volume V\
analogous to the curves in Fig[ 1 for r � 0[ The reductions in the critical cavitation stress for
increasing values of the initial yield strain are very similar to those found for r � 0[ Also\ for all
three curves the critical axial stress Sc is higher when r � 9[8\ but the di}erence from the curves in
Fig[ 1 is quite small at the largest initial yield strain\ sY:E � 9[0\ where Sc:sY � 1[90 in Fig[ 3[
Again\ it is noted that the critical stress level is reached somewhere in the range around V:V9 � 099\
a bit earlier for the higher value of sY:E[

The e}ect of the strain hardening level was investigated by Huang et al[ "0880# for remote
hydrostatic loading and by Tvergaard et al[ "0881# for other axisymmetric stress states[ It was
found in these investigations for low values of sY:E that the critical stress level depends rather
strongly on the strain hardening\ such that the critical stress is much higher for a high hardening
material\ presuming that the values of other material parameters are unchanged[ For the much
higher initial yield strain\ sY:E � 9[0\ and for r � 9[8\ Fig[ 4 shows a comparison between the
axial stress vs void volume growth curves for three di}erent levels of strain hardening[ Here\ the
curve for N � 9[0 is identical to one of the curves in Fig[ 3[ It is seen that increased strain hardening
still gives an increased critical stress level for the onset of a cavitation instability\ but the dependence
is much less pronounced than that found in the earlier studies for low values of sY:E[

In Fig[ 5 the critical stress values for r � 9[8 are shown as functions of sY:E for the three
di}erent values of the strain hardening exponent considered in Fig[ 4[ The values of sY:E range
from 9[991 to 9[04[ The curve for N � 9[0 in Fig[ 5 is directly comparable to the curve in Fig[ 2\
and it is seen that the critical axial stress Sc is larger for r � 9[8 than for r � 0\ in the whole
range considered[ Regarding the e}ect of di}erent levels of strain hardening\ it is noted that at
sY:E � 9[994\ the value of Sc is increased by 37) when the strain hardening exponent N is
increased from 9[94 to 9[1\ whereas at sY:E � 9[04 the corresponding increase is only 03)[
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Fig[ 4[ Remote axial stress vs void volume for T:S � 9[8\ sY:E � 9[0 and n � 9[2[

Fig[ 5[ Critical stress for cavitation instability vs initial yield strain for T:S � 9[8 and n � 9[2[

The dependence on Poisson|s ratio was considered brie~y by Huang et al[ "0880#\ mainly because
their numerical studies were carried out for n � 9[2\ while a number of simple model studies for
spherically symmetric conditions were carried out for incompressible elastic material behaviour\
n � 9[4[ In fact\ spherically symmetric results given by Huang et al[ "0880# for incompressible
elasticÐplastic material are also valid for large elastic strains[ It was found by Huang et al[ "0880#
that the values of Sc are somewhat higher for higher values of n[ In Fig[ 6 the dependence of n is
illustrated for sY:E � 9[0\ N � 9[0 and r � 9[8[ The dependence on n appears to be close to linear
in the range investigated\ and it is seen that incompressible elastic response will give rise to
somewhat higher values of Sc than those shown in the previous _gures\ for n � 9[2\
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Fig[ 6[ Critical stress for cavitation instability vs the value of Poisson|s ratio\ for T:S � 9[8\ sY:E � 9[0 and N � 9[0[

In the general case\ for r � 0\ such as the solutions illustrated in Figs 3Ð6\ the principal stress
directions rotate relative to the material during the deformation process\ and therefore the solutions
are dependent on using the shear moduli "1[02#\ corresponding to the truly elastic material
description[ Comparison with predictions based on the standard hypoelastic expressions for the
elastic moduli show di}erences in the values of the moduli[ However\ for the cases studied here\
the rotations of the principal stress axes are not very dominant\ so the values of stress and strain
quantities predicted by the two approaches di}er only a little in the cases where comparison has
been carried out[ Furthermore\ it is noted that the value of the expression Do coth"Do# in "1[02# is
0[992 for Do � 9[0\ 0[929 for Do � 9[2\ and 0[971 for Do � 9[4\ which indicates that the deviation
from unity grows only rather slowly with increasing strain level[ Therefore\ the elastic strain levels
considered in the present paper are not large enough to give a signi_cant di}erence from predictions
based on using the hypoelastic expressions[

4[ Discussion

The present studies of cavitation instabilities have focused on the e}ect of a large initial yield
strain for a power hardening elasticÐplastic material[ Extrapolation of results by Huang et al[
"0880# already indicate that the cavitation stress will be much reduced when the value of sY:E is
increased[ However\ the type of analyses carried out here are necessary to obtain quantitative
information[ To properly account for the rather large elastic strains occurring here\ the elastic part
of the deformation is represented in terms of a truly elastic "hyperelastic# material description\
rather than the hypoelastic approximation of elastic deformations often used in metal plasticity[

The large values of the initial yield strain considered here are unrealistic for metals[ Therefore\
the present investigation is inspired by other materials\ such as polymers\ which show an elasticÐ
plastic type of behaviour with high values of sY:E[ However\ the material model applied here does
not attempt to make use of the special descriptions developed by various authors for the inelastic
deformation of polymers[ While retaining classical plasticity\ the interest here is devoted to the
e}ect of the initial yield strain varying over a large range of values\ as most clearly illustrated by
the curves in Figs 2 and 5[ It is noted that some of the interest in void growth for polymers relates
to polymerÐrubber blends\ where the voids are often formed as a result of cavitation within the
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rubber particles[ In such cases\ for initial void radii much smaller than the outer radius of the
rubber particle\ an initial cavitation instability will be governed by rubber elasticity\ and polymer
plasticity will start to play a role when the void radius is closer to the current radius of the rubber
inclusions[ The present studies have no such e}ect of rubber elasticity\ so here the e}ect of the
non!proportional loading path a}ects the solution from the early onset of cavity growth\ as has
been discussed in relation to the results in Figs 1 and 2[

The e}ect of strain rate dependent yielding is not considered in the present paper\ but such
e}ects would be important for materials such as polymers[ Abeyaratne and Hou "0878# have
studied instabilities of cavity growth in a rate!dependent solid for spherically symmetric conditions
with incompressible material behaviour[ They study a variety of rate!dependent material laws and
distinguish between stress levels where cavity growth is slow and levels where growth is fast\ but
the general conclusion is that for the most common class of visco!plastic materials the void will
grow without bound at any tensile stress level[ In the rate!independent limit of the material
considered the behaviour reduces to the known cavitation instability behaviour for the cor!
responding rate!independent material[

As shown in Figs 4 and 5\ a more high hardening material results in a higher critical stress for
cavitation\ as was also found by Tvergaard et al[ "0881#[ However\ the relative increase of the
cavitation stress is much smaller at the high values of the initial yield strain considered here than
was found at small values of the yield strain[ The in~uence of Poisson|s ratio for the elastic part
of the deformation is shown in Fig[ 6 to be rather weak\ but the tendency is that the incompressible
elastic material behaviour will result in a slightly higher critical stress for cavitation[

The e}ect of using the truly elastic material description is found to be small in the cases studied
here\ seen in relation to predictions based on the corresponding hypoelastic model[ For spherically
symmetric conditions\ where the principal stress directions do not rotate relative to the material\
there is no di}erence at all[ But also in the more general axisymmetric cases analysed the di}erences
are quite small[
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